Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Biofouling ; 39(6): 643-660, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37537897

RESUMO

Ecological monitoring has been recognized as a key tool for guiding biofouling management practices. A two-year study was designed to collect comprehensive data on the biofouling community progression at Port Canaveral, Florida, using clear recruitment panels and a scanner to directly observe organisms attached to the surface. This method allowed for minimal disruption to the natural community development and aided the collection of a suite of metrics to explore environmental relationships. Seasonal changes in community composition and biofouling pressure, especially at earlier stages, were related to abiotic conditions. Interannual variation within seasonal communities was also observed. The type of dominant organism present impacted the rate at which surfaces were covered (e.g. fastest cover with tunicates) and the overall biomass accumulation (e.g. highest rate with tubeworms). Results highlight that understanding the influence of the time of year and the dominant organism identity is ecologically vital for improving biofouling management.


Assuntos
Incrustação Biológica , Urocordados , Animais , Incrustação Biológica/prevenção & controle , Biofilmes , Biomassa
2.
Microorganisms ; 11(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37317322

RESUMO

Biofilms are conglomerates of cells, water, and extracellular polymeric substances which can lead to various functional and financial setbacks. As a result, there has been a drive towards more environmentally friendly antifouling methods, such as the use of ultraviolet C (UVC) radiation. When applying UVC radiation, it is important to understand how frequency, and thus dose, can influence an established biofilm. This study compares the impacts of varying doses of UVC radiation on both a monocultured biofilm consisting of Navicula incerta and field-developed biofilms. Both biofilms were exposed to doses of UVC radiation ranging from 1626.2 mJ/cm2 to 9757.2 mJ/cm2 and then treated with a live/dead assay. When exposed to UVC radiation, the N. incerta biofilms demonstrated a significant reduction in cell viability compared to the non-exposed samples, but all doses had similar viability results. The field biofilms were highly diverse, containing not only benthic diatoms but also planktonic species which may have led to inconsistencies. Although they are different from each other, these results provide beneficial data. Cultured biofilms provide insight into how diatom cells react to varying doses of UVC radiation, whereas the real-world heterogeneity of field biofilms is useful for determining the dosage needed to effectively prevent a biofilm. Both concepts are important when developing UVC radiation management plans that target established biofilms.

3.
Biofouling ; 39(1): 64-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924139

RESUMO

Biofouling is a major challenge for sustainable shipping, filter membranes, heat exchangers, and medical devices. The development of fouling-resistant coatings requires the evaluation of their effectiveness. Such an evaluation is usually based on the assessment of fouling progression after different exposure times to the target medium (e.g. salt water). The manual assessment of macrofouling requires expert knowledge about local fouling communities due to high variances in phenotypical appearance, has single-image sampling inaccuracies for certain species, and lacks spatial information. Here an approach for automatic image-based macrofouling analysis was presented. A dataset with dense labels prepared from field panel images was made and a convolutional network (adapted U-Net) for the semantic segmentation of different macrofouling classes was proposed. The establishment of macrofouling localization allows for the generation of a successional model which enables the determination of direct surface attachment and in-depth epibiotic studies.


Assuntos
Biofilmes , Incrustação Biológica , Semântica , Incrustação Biológica/prevenção & controle , Processamento de Imagem Assistida por Computador/métodos , Navios
4.
Sci Rep ; 12(1): 11799, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821390

RESUMO

For many decades, silicone elastomers with oil incorporated have served as fouling-release coating for marine applications. In a comprehensive study involving a series of laboratory-based marine fouling assays and extensive global field studies of up to 2-year duration, we compare polydimethylsiloxane (PDMS) coatings of the same composition loaded with oil via two different methods. One method used a traditional, one-pot pre-cure oil addition approach (o-PDMS) and another method used a newer post-cure infusion approach (i-PDMS). The latter displays a substantial improvement in biofouling prevention performance that exceeds established commercial silicone-based fouling-release coating standards. We interpret the differences in performance between one-pot and infused PDMS by developing a mechanistic model based on the Flory-Rehner theory of swollen polymer networks. Using this model, we propose that the chemical potential of the incorporated oil is a key consideration for the design of future fouling-release coatings, as the improved performance is driven by the formation and stabilization of an anti-adhesion oil overlayer on the polymer surface.


Assuntos
Incrustação Biológica , Elastômeros de Silicone , Incrustação Biológica/prevenção & controle , Elastômeros/química , Teste de Materiais , Polímeros , Elastômeros de Silicone/química , Óleos de Silicone
5.
Biofouling ; 38(2): 119-130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35240893

RESUMO

The application of electric fields to conductive coatings is an environmentally friendly way to reduce biofilm formation. In particular alternating potentials (APs) have received increasing attention in recent studies. Here, an electrochemical rotating disk setup for dynamic field exposure experiments was developed to study how APs alter the attachment of fouling organisms in a multispecies ocean environment. A specific focus of the device design was proper integration of the potentiostat in the strongly corroding saltwater environment. The effect of APs on the accumulation of fouling organisms in short term field exposures was studied. Potentials on conductive gold surfaces were periodically switched between -0.3 V and 0.3 V or between -0.8 V and 0.6 V at a frequency of 0.5 Hz. APs were capable of significantly reducing the attachment of marine fouling organisms compared with the conductive samples immersed at open circuit potentials.


Assuntos
Biofilmes , Ouro , Condutividade Elétrica
6.
Macromol Rapid Commun ; 43(12): e2100589, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34734670

RESUMO

Amphiphilic polymer coatings combining hydrophilic elements, in particular zwitterionic groups, and hydrophobic elements comprise a promising strategy to decrease biofouling. However, the influence of the content of the hydrophobic component in zwitterionic coatings on the interfacial molecular reorganization dynamics and the anti-fouling performance is not well understood. Therefore, coatings of amphiphilic copolymers of sulfobetaine methacrylate 3-[N-2'-(methacryloyloxy)ethyl-N,N-dimethyl]-ammonio propane-1-sulfonate (SPE) are prepared which contain increasing amounts of hydrophobic n-butyl methacrylate (BMA). Their fouling resistance is compared to that of their homopolymers PSPE and PBMA. The photo-crosslinked coatings form hydrogel films with a hydrophilic surface. Fouling by the proteins fibrinogen and lysozyme as well as by the diatom Navicula perminuta and the green algae Ulva linza is assessed in laboratory assays. While biofouling is strongly reduced by all zwitterionic coatings, the best fouling resistance is obtained for the amphiphilic copolymers. Also in preliminary field tests, the anti-fouling performance of the amphiphilic copolymer films is superior to that of both homopolymers. When the coatings are exposed to a marine environment, the reduced susceptibility to silt incorporation, in particular compared to the most hydrophilic polyzwitterion PSPE, likely contributes to the improved fouling resistance.


Assuntos
Incrustação Biológica , Diatomáceas , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Propriedades de Superfície
7.
Langmuir ; 37(18): 5591-5600, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33930274

RESUMO

Methacrylate and acrylate monomers are popular building blocks for antifouling (AF) and fouling-release (FR) coatings to counteract marine biofouling. They are used in various combinations and often combined into amphiphilic materials. This study investigated the FR properties of amphiphilic ethylene glycol dicyclopentenyl ether acrylate (DCPEA) and the corresponding methacrylate (DCPEMA) blended with 5 wt % zwitterionic carboxybetaine acrylate (CBA) and the corresponding methacrylate (CBMA). A series of (co)polymers with different acrylate/methacrylate compositions were synthesized and tested against the attachment of the diatom Navicula perminuta and in short-term dynamic field exposure experiments. The more hydrophobic methacrylate DCPEMA homopolymer outperformed its acrylate counterpart DCPEA. Incorporated zwitterionic functionality of both CBMA and CBA imparted ultralow fouling capability in the amphiphilic polymers toward diatom attachment, whereas in the real ocean environment, only the employment of CBMA reduced marine biofouling. Moreover, it was observed that CBA-containing coatings showed different surface morphologies and roughnesses compared to the CBMA analogues. Particularly, a high impact was found when acrylic CBA was mixed with methacrylic DCPEMA. While the wettability of the coatings was comparable, investigated methacrylates in general exhibited superior fouling resistance compared to the acrylates.

8.
ACS Appl Mater Interfaces ; 13(5): 6659-6669, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497184

RESUMO

Dendritic polyglycerol (PG) was covalently coupled to 2-hydroxyethyl methacrylate (HEMA) by an anionically catalyzed ring-opening polymerization generating a dendritic PG-HEMA with four PG repetition units (PG4MA). Coatings of the methacrylate monomer were prepared by grafting-through and compared against commercially available hydrophilic monomers of HEMA, poly(ethylene) glycol methacrylate (PEGMA), and poly(propylene) glycol methacrylate (PPGMA). The obtained coatings were characterized by modern surface analytical techniques, including water contact angle goniometry (sessile and captive bubble), attenuated total internal reflection Fourier transform infrared spectroscopy, and atomic force microscopy. The antifouling (AF) and fouling-release (FR) properties of the coatings were tested against the model organisms Cobetia marina and Navicula perminuta in laboratory-scale dynamic accumulation assays as well as in a dynamic short-term field exposure (DSFE) in the marine environment. In addition, the hydration of the coatings and their susceptibility toward silt uptake were evaluated, revealing a strong correlation between water uptake, silt incorporation, and field assay performance. While all glycol derivatives showed good resistance in laboratory settlement experiments, PPGMA turned out to be less susceptible to silt incorporation and outperformed PEGMA and PG4MA in the DSFE assay.


Assuntos
Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Diatomáceas/efeitos dos fármacos , Halomonadaceae/efeitos dos fármacos , Metacrilatos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Metacrilatos/síntese química , Metacrilatos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Água/química
9.
ACS Appl Mater Interfaces ; 12(47): 53286-53296, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180471

RESUMO

Hybrid materials (HMs) offer unique properties as they combine inorganic and organic components into a single material. Here, we developed HM coatings for marine antifouling applications using sol-gel chemistry and naturally occurring polysaccharides. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, AFM, and ATR-FTIR, and their stability was tested in saline media. Marine antifouling and fouling-release properties were tested in laboratory assays against the settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of the diatom Navicula incerta. Furthermore, laboratory data were confirmed in short-term dynamic field assays in Florida, USA. All hybrid coatings revealed a superior performance in the assays compared to a hydrophobic reference. Within the hybrids, those with the highest degree of hydrophilicity and negative net charge across the surface performed best. Alginate and heparin showed good performance, making these hybrid materials promising building blocks for fouling-resistant coatings.

10.
Biofouling ; 36(6): 646-659, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32718200

RESUMO

Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[N-(2-methacryloyloxyethyl)-N,N-dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains. The effect of increasing crosslink density on the antifouling (AF) performance of the coatings was investigated in laboratory assays and fields tests. In both cases, the AF performance was improved by increasing the crosslinker content. The coatings reduced protein, diatom, and barnacle accumulation, and showed better resistance to biomass accumulation. The findings underline that the marine AF performance of hydrogel coatings does not only depend on the specific chemical structure of the polymers, but also on their physico-chemical properties such as rigidity and swelling.


Assuntos
Incrustação Biológica , Hidrogéis , Thoracica , Animais , Incrustação Biológica/prevenção & controle , Metacrilatos , Propriedades de Superfície
11.
ACS Appl Mater Interfaces ; 12(30): 34148-34160, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32567832

RESUMO

Zwitterionic materials received great attention in recent studies due to their high antifouling potential, though their application in practical coatings is still challenging. Amphiphilic polymers have been proven to be an effective method to combat fouling in the marine environment. This study reports the incorporation of small amounts of zwitterionic carboxybetaine methacrylate (CBMA) into hydrophobic ethylene glycol dicyclopentenyl ether acrylate (DCPEA). A new set of copolymers with varying amphiphilicities was synthesized and coated on chemically modified glass substrates. The antifouling capabilities were assessed against the diatom Navicula perminuta and multiple species in the field. Unsurprisingly, high diatom densities were observed on the hydrophobic control coatings. The integration of small zwitterionic contents of only ∼5 wt % was already sufficient to rapidly form a hydrophilic interface that led to a strong reduction of fouling. Ultralow fouling was also observed for the pure zwitterionic coatings in laboratory experiments, but it failed when tested in the real ocean environment. We noticed that the ability to absorb large amounts of water and the diffuse nature of the interphase correlate with the adsorption of silt, which can mask the hydrophilic chemistries and facilitate the settlement of organisms. The amphiphilic coatings showed low fouling in dynamic short-term field exposures, which could be explained by the reduced tendency of the coatings for sediment adsorption.


Assuntos
Incrustação Biológica/prevenção & controle , Diatomáceas/fisiologia , Polímeros/química , Acrilatos/química , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Propriedades de Superfície
12.
Philos Trans R Soc Lond B Biol Sci ; 374(1784): 20190203, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31495306

RESUMO

Concerns about the bioaccumulation of toxic antifouling compounds have necessitated the search for alternative strategies to combat marine biofouling. Because many biologically essential minerals have deleterious effects on organisms at high concentration, one approach to preventing the settlement of marine foulers is increasing the local concentration of ions that are naturally present in seawater. Here, we used surface-active borate glasses as a platform to directly deliver ions (Na+, Mg2+ and BO43-) to the adhesive interface under acorn barnacles (Amphibalanus (=Balanus) amphitrite). Additionally, surface-active glasses formed reaction layers at the glass-water interface, presenting another challenge to fouling organisms. Proteomics analysis showed that cement deposited on the gelatinous reaction layers is more soluble than cement deposited on insoluble glasses, indicating the reaction layer and/or released ions disrupted adhesion processes. Laboratory experiments showed that the majority (greater than 79%) of adult barnacles re-attached to silica-free borate glasses for 14 days could be released and, more importantly, barnacle larvae did not settle on the glasses. The formation of microbial biofilms in field tests diminished the performance of the materials. While periodic water jetting (120 psi) did not prevent the formation of biofilms, weekly cleaning did dramatically reduce macrofouling on magnesium aluminoborate glass to levels below a commercial foul-release coating. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.


Assuntos
Boratos/química , Magnésio/química , Sódio/química , Thoracica/fisiologia , Animais , Propriedades de Superfície
13.
Biofouling ; 35(6): 658-668, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31385534

RESUMO

A two-part study was designed to investigate the efficacy of using UVC to prevent biofouling in the context of ship hull coatings. The first study determined the frequency of UVC required for a coating that does not have any additives (epoxy). It was found that 1 min/day was effective at preventing hard fouling but not biofilm development. The second study addressed several variables: coating type (epoxy, copper, fouling release), frequency of UVC (no exposure, continuous exposure, 1min/6h, 1 min/day), and distance from the lamp (25 and 50 mm). Continuous UVC exposure resulted in no biofouling settlement but it did damage the copper coating. Intermittent UVC exposure was effective at preventing biofouling recruitment to both the copper and the fouling release coatings. Variations were observed with regards to the fouling composition, especially biofilms, sedimentary tubeworms and barnacles, suggesting tolerances within the community.


Assuntos
Incrustação Biológica/prevenção & controle , Navios , Raios Ultravioleta , Biofilmes/crescimento & desenvolvimento , Controle de Pragas/métodos
14.
Biofouling ; 35(4): 454-462, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31088166

RESUMO

Hydrophilic coatings exhibit ultra-low fouling properties in numerous laboratory experiments. In stark contrast, the antifouling effect of such coatings in vitro failed when performing field tests in the marine environment. The fouling release performance of nonionic and zwitterionic hydrophilic polymers was substantially reduced compared to the controlled laboratory environment. Microscopy and spectroscopy revealed that a large proportion of the accumulated material in field tests contains inorganic compounds and diatomaceous soil. Diatoms adhered to the accumulated material on the coating, but not to the pristine polymer. Simulating field tests in the laboratory using sediment samples collected from the test sites showed that incorporated sand and diatomaceous earth impairs the fouling release characteristics of the coatings. When exposed to marine sediment from multiple locations, particulate matter accumulated on these coatings and served as attachment points for diatom adhesion and enhanced fouling. Future developments of hydrophilic coatings should consider accumulated sediment and its potential impact on the antifouling performance.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Incrustação Biológica , Diatomáceas/efeitos dos fármacos , Oceanos e Mares , Propriedades de Superfície
15.
ACS Appl Mater Interfaces ; 10(41): 34965-34973, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30248259

RESUMO

Dendritic polyglycerols (PGs) were grafted onto surfaces using a ring-opening polymerization reaction, and the fouling-release properties against marine organisms were determined. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, ATR-FTIR, and stability tests in different aqueous media. A high resistance toward the attachment of different proteins was found. The PG coatings with three different thicknesses were tested in a laboratory assay against the diatom Navicula incerta and in a field assay using a rotating disk. Under static conditions, the PG coatings did not inhibit the initial attachment of diatoms, but up to 94% of attached diatoms could be removed from the coatings after exposure to a shear stress of 19 Pa. Fouling release was found to be enhanced if the coatings were sufficiently thick. The excellent fouling-release properties were supported in dynamic field-immersion experiments in which the samples were continually exposed to a shear stress of 0.18 Pa.


Assuntos
Incrustação Biológica/prevenção & controle , Diatomáceas/crescimento & desenvolvimento , Glicerol/farmacologia , Polímeros/farmacologia
16.
Biofouling ; 34(2): 162-172, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29347829

RESUMO

Grooming is a proactive method to keep a ship's hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.


Assuntos
Incrustação Biológica/prevenção & controle , Diatomáceas/crescimento & desenvolvimento , Fricção , Navios , Biofilmes/crescimento & desenvolvimento , Propriedades de Superfície
17.
Biofouling ; 33(6): 494-504, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28604166

RESUMO

More than 90% of US Navy Ships are coated with copper ablative paint. These ships may spend long periods of time pier-side, which makes them vulnerable to fouling. Hull grooming has been proposed as a means of maintaining the coatings in an operational condition. This study investigated the effect of grooming on a copper ablative coating exposed statically for six years. Grooming was performed weekly or monthly with controls left ungroomed. The fouling community was visually assessed, dry film thickness measurements were taken to monitor coating loss, and the copper leaching rates were measured. It was found that weekly and monthly groomed surfaces reduced fouling, and the ungroomed surfaces became fully fouled. Coating loss was similar for weekly, monthly and ungroomed surfaces. The results suggest that grooming is a viable method for maintaining copper ablative coatings in a fouling-free condition without adverse increases in the total copper output.


Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Cobre/química , Pintura , Navios , Modelos Teóricos , Propriedades de Superfície , Fatores de Tempo
18.
Biofouling ; 33(5): 433-449, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28508710

RESUMO

Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.


Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Diatomáceas/crescimento & desenvolvimento , Navios , Diatomáceas/fisiologia , Florida , Água Doce/química , Hidrodinâmica , Salinidade , Água do Mar/química , Estresse Fisiológico
19.
J Patient Cent Res Rev ; 4(4): 213-220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31413985

RESUMO

PURPOSE: Life expectancy at birth is used as a barometer of the health and well-being of a population. Life expectancies vary widely across Wisconsin counties. While much of the analysis of life expectancy in Wisconsin has focused on counties, there may be important differences in life expectancy within counties by zip code. METHODS: To calculate life expectancy, death count data and population estimates were entered into an abridged life table using the Chiang methodology. Data were linked with measures from the American Community Survey to examine the relationship between life expectancy and zip code characteristics. RESULTS: Life expectancy varies greatly across zip codes in Milwaukee County. Overall, there was a 12-year difference in the life expectancy of children born into zip codes with the lowest and highest life expectancy: 53206 (71.3 years) and 53217 (83.2 years). There was a strong positive correlation between life expectancy and median household income (r=0.784, P<0.0001), educational attainment of a bachelor's degree or higher (r=0.741, P<0.0001) and the socioeconomic index combining education and income (r=0.819, P<0.0001). CONCLUSIONS: Disparities in life expectancy within Milwaukee County are stark and correlate with differences in social and economic factors. To improve health outcomes such as life expectancy, health care practitioners and health care systems must become more involved in activities at the social and policy levels to improve social and economic conditions that would allow their patients to live healthier and longer lives.

20.
Biofouling ; 32(10): 1209-1221, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27744722

RESUMO

The role of hydrodynamic wall shear stresses on the development of the fouling community structure and resulting frictional drag were examined using a commercially available fouling release coating. Immersed test panels were exposed to three different hydrodynamic treatments, one static and two dynamic (corresponding to an estimated wall shear stress of 7.0  and 25.5 Pa). The drag of the panels was measured in a hydrodynamic test chamber at discrete time intervals over 35 days. The fouling community composition on the static panels was significantly different from the organisms observed on the dynamic panels. Despite different fouling community composition, the drag forces measured on the panels were very similar. This suggests that the frictional drag of low form and soft fouling communities are similar and that there may be a stepwise increase in frictional drag associated with the presence of mature calcareous organisms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Fricção , Hidrodinâmica , Modelos Teóricos , Navios , Pressão , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...